CHAPTER

2

BASIC PRINCIPLES

2.1 INTRODUCTION

The concept of power is of central importance in electrical power systems and is
th,: main topic of this chapter. The typical siudent will already have ‘sludmd much
of this matetial, and the review here will serve o reinforee the power concepts
encountered in the electric circuit theory.

. In ii_ais chapter, the flow of energy in an ac circuit is investigated. By using
VArions trigonometric identitics. the instantaneous power pi{t) is resolved into tw:J
components. A plot of these components is obtained using MATLAB to observe that
ac net work_s not only consume energy at an average rate, bur also borrow and return
cnurgy 10 1ts sources. This leads to the basic definitions of average power I” and
feaclive power Q. The volt-ampere S, which is a mathematical formulation based
on the P}_lasor forms of voltage and current, is introduced. Then the complex power
balance is demonstrated, and the transmission inefficiencies caused by loads with
low power factors are discussed and demonstrated by means of several examples.
Siderel(\irext, d1ht: transmission of complex power between two voltuge sources is con-

i, and the dle,pendency of real power on the voltage phase angle and the de-
Sz:v»nyy of reactive power on.vnl)lmge mag_nitude is established. MATLAR is used

eniently to demonstrate this idea graphicaliy.
i ;:;[I;ally.dthe balanced lhremph'ase circ.ui{ is'cxamincd. An important property
nced three-phase system is that it delivers constant power. That is, the
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power delivered does not fluctuate with time as in a single-phase system. For the

- purpose of analysis and modeling, the per-phase equivalent circuit is developed for

the three-phase system under balanced condition.

2.2 POWER IN SINGLE-PHASE AC CIRCUITS

Figure 2.1 shows a single-phase sinusoidal voltage supplying a load.

) i(t) :
¥ _
u(t)
-
FIGURE 2.1

Sinusotdal source supplying a load,
Let the instantaneous voltage be

o(t) = V,, cos(wt + 8,) 20
and the instantaneous current be given by

i{t) = I, cos(wt + 8,) (2.2)

The instantaneous power p(t) delivered to the load is the product of voltage »(¢)
and current (¢} given by

p(t) = w(t) i{t) = Vi I, cos(wt + 8,) cos(wt + 6;) (2.3)

In Example 2.1, MATLAB is used to plot the instantaneous power p(t), and the
result is shown in Figure 2.2, In studying Figure 2.2, we note that the frequency of
the instantaneous power is twice the source frequency. Also, note that it is possible
for the instantaneous power to be negative for a portion of each cycle. In a passive
network, negative power implies that energy that has been stored in inductors or
capacitors is now being extracted, )

It is informative to write (2.3) in another form using the trigonometric identity

cos Acos B = %cos(A - B) + -;—cos(A + B) (2.4)
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which results in
1
plt) = _-5'/,“1,,, [cos(8y — 6,) + cos{2wt + 8, + 6,)]
5.
= 5Vinlm{cos(, - 8,) + cos[2(wt + 8,) - (0. - 8,)]}
I
= 5!/,., In[cos(8y — 6;) + cos 2wt + 8,) cos(8, - 8,)
+sin 2(wt + 6,.) sin(6, — 8,)]
The rooi-mean-square (rms) vaiue of v(t) is V| = V,,/v2 and the rms value of
it)is |l =1,/V2 . Let @ = (8, — 6,). The above equation, in terms of the rms

values, is reduced 1o

plt) = l‘_“f! os 01 + cos 2(wt + 8,)] + [V sin @ sin 2(wt + 0,)
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palt) pxlt)
Energy flow into Energy borrowed and
the circuit returned by the circuit

(2.5)

wh;rg f)llS the angle between voltage and current, or the impedance angle. # iy
positive :f[_hc load is inductive, (i.e., current is lagging the voltage) and € is negative
if the load is capacitive (i.e., current is leading the voltage).

~ The instantaneous power has been decomposed into two components. The
first component of (2.5) is

Pr{t) = [V||I|cos 8 + [V ||I| cos 8 cos 2wt +6,)] (2.6)

The second term in (2.6), which has a frequency twice that of the source, accounts
for the sinusoidal variation in the absorption of power by the resistive portion of

the foad. Since the average value of this sinusoidal function is zero, the average
power delivered (o (he load js given by

P=|V{|I|cos 8 2.7

This is the power absorbed by the resistive component of the load and is also re-
ferred 1o as the active power or real power. The product of the rms voltage value
22?{;1:; \121{: current value {V[|1 is called the apparent power and is measured in
iy mhzmpere, The prod'uc: of the apparent power and the cosine of the angle
iy ge and current yields ‘the relal‘ power. Because cos 8 plays a key role in

efmination of the average power, it is called power factor. When the current

la;,;s the voltage, the power factor is considered lagging. When the current leads the
voltage, the power factor is considered leading,

The second component of (2.5)

px(t) = V||| sin 8 sin 2(wt + 4,) (2.8)

obe EAIVYER DN SMNULE-FIIAIL A inv g wik

pulsates with twice the frequency and has an average value of zero. This compa-
nent accounts for power oscillating into and out of the load because of its reactive
element (inductive or capucitive). The amplitude of this pulsating power is calied
reactive power and is designated by 0.

Q= |V||I|sing (29

Both P and Q have the same dimension. However, in order to distinguish between
the real and the reactive power, the term “var" is used for the reactive power (var is
an acronym for the phrase “volt-ampere reuctive™). For an inductive load, current is
tagging the voltage. § = (8, — 6,) > O and Q is positive: whereas, for a capacitive
load, current is leading the voltage, 8 = (#, — ¢,) < 0 and Q is negative.

A careful study of Equations (2.6) and (2.8) reveals the foltowing character-
istics of the instantancous power.

e For 4 pure resistor. the impedance angle is zero and the power fuctor is unity
(UPF), so that the apparent and real power are equal. The electric energy is
transformed into thermal energy.

e If the circuit is purely inductive, the current Jags the volage by 907 and the
average power is zero. Therefore, in a purely inductive circuit, there is no
transformation of encrgy from electrical to noneleetrical form. The mstanta-
neous power al the terminal of a purely inductive circuit oscillates between
the circuit and the source. When p(t) is positive, encrgy is being stored in
the magneue held associated with the inductive elements, and when p(?) is
negative, energy is being extracted from the magnetic fields of the inductive
elements.

s If the load is purely capacitive, the current leads the voltage by 90°, and the
average power is zero, so there is no transformation of energy from electri-
cal to nonelectrical form. In a purely capaciuve circuit, the power oscillates
between the source and the electric field associated with the capacitive ele-
ments.

Example 2.1

The supply voltage in Figure 2.1 is given by u(t) = 100coswt and the load is
tnductive with impedance Z = 1.25£60° §2. Determine the expression for the
nstantaneous curreat /(#) and the instantaneous power p(t). Use MATLAR to plot
i), v(8), p(#). prif). and px () over an interval of 0 to 2.

100£0°

p o —e—— - i A
Dnac 1.25460° 80¢ -60




v(t) = Vin coswt, i(t) = I, cos{wt — 60) plt) = v(t)i(e)
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FIGURE 2.2

Instantancous current, voltage, power, Eys. 2.6 and 2.8,

therefore

i(t) = 80 cos(wt — 50°) A
p(t) = v(t) i(t) = 8000 cos wt cos(wt — 60°) W

The' following statements are used to plot the above instantaneous quantities and
the instantaneous terms given by (2.6} and (2.8).

VYo = 100: thetav = 0; A Voltage amplitude and phase angle
Z-= 1:25; gama = 60; % Impedance magnitude and phase angle
thetai = thetav - gana; % Current phase angle in degree
theta = (thetav - thatai)*pi/la(}; % Degree to radian
Im = Vo/7; % Current amplitude
wt = 0: -08:2%pi; % wt from 0 to 2*pi
v o= Vm*cos(wt); % Instantaneous voltage

rn
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Im*cos(wt + thetai*pi/180); % Instantaneocus current

; = v.%i; % Instantaneous power
Vv = Vm/sqrt(2); I=Im/sqrt(2); % rms voltage and current
P = VxI*cos(theta); % Average power
Q = V=Issin(theta); % Reactive power
s =P + j=*( % Complex power
pr = Px(1 + cos(2x(wt + thetav))); % Eq. (2.6
px = Q*sin(2*(wt + thetav)); 4 Eq. (2.8}
PP = Pxones(i, length{(wt));/Average power of length w for plot

xline = zeros(l, length(wt)); %generates a zero vector
wt=180/pi*vt; % converting radian to degree
subplot(2,2,1), plot(wt, v, wt,i,wt, xline), grid
title([’v(t)=Vm coswt, i(t)=Im cos(wt+', num2str(thetai), ’)']}
xlabel(’wt, degree’)

subplot(2,2,2}, plot(wt, p, wt, xline), grid

titleCp{)=vi{t) i(t)’),xlabel (*wt, degree’)

subplot(2,2,3}, plot(wt, pr, wt, PP,wt,xline), grid
title("prit) Eq. 2.6’), xlabel(’wt, degree’)

subplot(2,2,4), plot(wt, px, wt, xline), grid

title(C’px(t) Eq. 2.8'), xlabel(’wt, degree’), subplot(111)
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The rms voltage phasor of (2.1) and the ems currant phasor of (2.2) shown in Fig-
ure 2.3 are

V = |V|/8, and I = 1|28,

The term VI results in

P

FIGURE 2.3
Phasor diagram and power triangle for an inductive load (lagging PF).

VI* = |V||[I{L8, — 6; = |V||]|6
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= {V|}I|cos 8 + j|V|[I|sind

The above equation defines a complex quantity where its real part is the average

(real} power P and its imaginary part is the reactive power Q. Thus, the complex
power designated by S is given by :

S=VI=P+j0Q 2.10)

The magnitude of S, {S| = /P? + Q2 is the apparent power; its unit is volt-
amperes and the larger units are kVA or MVA. Apparent power gives a direct indi-
cation of heating and s used as a rating unit of power equipment. Apparent power
has practical significance for an electric utility company since a utility company
must supply both average and apparent power to consumers,

The reactive power @) is positive when the phase angle § between voltage and
current {(impedance angle} is positive (i.e., when the load impedance is inductive,
and £ lags V). Q is negative when 4 is negative (i.e., when the load impedance is
capacitive and [ leads 1) as shown in Figure 2.4.

In working with Equation (2.10 ) it is convenient to think of P, Q. and S as
forming the sides of a right triangle as shown in Figures 2.3 and 2.4.

I V
P
9 T
Z \Z : o
[IRYA S\“H f
i ‘\\”
FIGURE 2.4
Phasor diagram and power triangle for a capacilive load {feuding PF).
If the load impedance is Z then
V=2I (2.11)
substituting for V into (2.10) yields
S=VI"=2ZII" = RI* + i X\I}? (2.12)

From (2.12) it is evident that complex power § and impedance Z have the same
ang!e. Because the power triangle and the impedance triangle are similar triangles,
the impedance angle is sometimes called the power an gle.
Similarly, substituting for I from (2.11) into (2.10) yields
vve vi?

S=VI'=—— =
7 T (2.i3)

L
{
\
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From (2.13), the impedance of the complex power S is given by

P

VA <

(2 14)

2.4 THE COMPLEX POWER BALANCE

From the conservation of energy, it is clear that real power supplied by the source is
equal to the sum of real powers absorbed by the Joad. At the same time, a balance
between the reactive power must be maintained. Thus the total complex power
delivered to the Joads in parsallel is the sum of the complex powers delivered to
each. Proof of this is as follows:

I I Iy I3

FIGURE 25
Three Joads in paraticl.

For the three loads shown in Figure 2.5, the total caomplex power is given by

§'= VI" = VL 2 e d) =V 4 VIS4 VT {2.15)

Example 2.2

In the above circuit V' = 120040° V, Z; = 60 + j0'Q, Zy = 6 + j12 Q and
Z3 = 30 — 730 Q. Find the power absorbed by each load and the total complex
power,

1200£0°
_———— . & 0 1 A.
I §020 20 + 40
1200£0° i
= =40 — 80 A
b 6+ 512 1

1200£0°

h=%= 730

=20 + j20 A

ST TS e S sy TR TR W
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S, = VI{ = 1200£0°(20 — 70) = 24,000 W + 70 var
Sy = VIj = 1200£0°(40 + 780) = 48,000 W + 796, 000 var
Sy = VI = 1200£0°(20 — 720) = 24,000 W — 724,000 var
The total load complex power adds up 1o
S=S|+SQ+S3=96.0(K]W+3772,000W

Alternatively, the sum of complex power delivered to the load can be obtained by
first finding the total current.

I'=1I+ I+ I3 = (20 + j0) + {40 - 380) + (20 + j20)
= 80 ~ j60 = 100£-36.87° A
and
§=VI" = (1200£0°)(100£36.87°) = 120.000/36.87° VA
= 96.000 W + 572,000 var

A final insight is contained in Figure 2.6, which shows the current phasor diagram
and the complex power vector representation.

S
S
[; /

‘fi S{

Sy
I

Iy

FIGURE 2.6

Current phasor diagram and power plane diagram.

The complex powers may also be obtained directly from (2.14)

VI (1200)?
Sn=|-l—-=§—m}i~=24,ooow+jo

Zy 60
in2 (1200)2 ’
So=t =210
2 7 6= 712 48,000 W -+ 796, 000 var

_ VP (x200)2
Z§ 30+ 730

53

= 24,000 W — §24, 000 var

=
i
H
1
-
i
i
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2.5 POWER FACTOR CORRECTION

It can be seen from (2.7) that the apparent power will be larger than P if the power
factor 1s less than 1. Thus the current J that must be supplied will be larger for
PF < 1than it would be for PF = 1, even though the average power P supplied
is the same in either case. A larger current cannot be supplied without additional
cost to the utility company. Thus, it is in the power company's {(and its customer’s)
best interest that major loads on the system have power factors as close to 1 as
possible. In order 1o maintain the power factor close to unity, power companics
install banks of capacitors throughout the network as needed. They also impose an
additional charge to industrial consumers who operate at low power factors. Since
industrial loads are inductive and have low lagging power fuctors, it is beneficial to
install capacitors to improve the power factor. This consideration is not important
for residential and small commercial customers because their power factors are .
close to unity.

Example 2.3
Two loads Z; = 100 + j0 Qund Zy = 10 + j20 Q are connected across a 200-V
rms, 60-Hz source as shown in Figure 2.7,

(2) Find the 1otal real and reactive power, the power factor at the source, and the
total current.

] I I V1. E
10 2 1 ’
Q
200V CD 100 §2 —€
J20 2 !
: P
' Qe

FIGURE 2.7
Circuit for Example 2.3 and the power triangle.

200£0°

B = = 2/0°

V 100 0" A
20070°

.

2= 101420 LE

Sy = VI} = 200£0°(2 — jO) = 400 W + 50 var
So = VI3 = 200£0°(4 + j8) = 800 W + j1600 var




24 2. BASIC PRINCIPLES

Total apparent power and current are

S =P+ jQ = 1200 + 1600 = 2000£53.13° VA

S* 2000£-53.13°
= —=—_—— =1 —53. 35
1= S 0£-53.13° A

Power factor at the source is
PF = cos(53.13) = 0.6 lagging

(b) Find the capacitance of the capacitor connected across the loads to improve the
overal! pewer factor to 0.8 lagging.

Totat real power P = 1200 W at the new power factor 0.8 lagging. Therefore

8" = cos™1(0.8) = 36.87°
Q' = Ptan 0 = 1200tan(36.87°) = 900 var
Qe = 1600 ~ 900 = 700 var

o |V}? _ (200)*
sy 4700
10°

Cm o = 4642 4F
(o) (57.14) oAz

= —j57.14

The total power and the new current are
§' = 1200 + j900 = 1500/36.87°
/= S 1500£—-36.87°
Ve T 200400
Note the reduction in the supply current from 10 A to 7.5 A.

=7.5/-36.87°

Example 2.4
Three loads are connected in parallel across a 1400-V rms, 60-Hz single-phase
supply as shown in Figure 2.8.

Load 1: Inductive load, 125 kVA at 0.28 power factor.

Load 2: Capacitive load, 10 kW and 40 kvar,

Load 3: Resistive load of 15 kW,

(@) Find the total KW, kvar, KVA, and the supply power factor.

2.5 POWER FACTOR CORRECTION 25

: in In 15
wv® ] 2] [ ?

FIGURE 2.3
Circuit for Example 2.4,

An inductive load has a lagging power factor, the capacitive load has a lead-
ing power factor, and the resistive load has a unity power factor.

For Load 1:
1 = cos™'(0.28) = 73.74° lagging

The load complex powers are

i
|

= 125/73.74 kVA = 35 kW + 7120 kvar
Sy = 10 kW — 540 kvar
Ss — 13 AW + jO kvar

The total apparent power is

S=P+jQ=5+85:+5;
= (35 + j120) + (10 — 740) + (15 + 70)
= 60 kW + 780 kvar = 100/53.13 kVA

The total current is

§*  100,000£-53.13°
_— = . = TI. —53.13°
= e 143/-53.13° A

The supply power factor is

I=

PF = c0s(63.13) = 0.6 lagging

(b) A capacitor of negligible resistance is connected in parallel with the above loads
to improve the power factor to 0.8 lagging. Determine the kvar rating of this ca-
pacitor and the capacitance in ;F.

- —— A —— LI AT ST T
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Total real power P = 60 kW at the new power factor of 0.8 lagging results in the
new reactive power Q.

8 = cos™'(0.8) = 36.87°
Q' = 601an{36.87°) = 45 kvar

Therefore, the required capacitor kvar is

Q. =80—45=135 kvar

and
A= i = ﬂ = —J56 Q
S 735,000
= L = 47,37 uF
27 (6)(56) '
and the new current is
. 57 60,000 — 45, U(l{) 53.57/—36.87° A

V- 1400/£0°
Note the reduction in the supply current from 71,43 A to 53.57 A.

26 COMPLEX POWER FLOW

Consider two ideal voltage sources connec:ud by a line of impedance Z = R +
71X £l as shown in Figure 2.9,

.
fy

Z=R+tiX =7,

Vl Vo

FIGURE 2.9
Two interconnected voltage sources.

Let the phasor voltage be V] = |14|£8, and V, = |Va]£85. For the assumed direc-
tion of current

1y = Ll = s, _

_ Wl
2 . [6 s
12127 e ST T

121

T g i i P e, S . e
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The complex power S is given by

Vil
S12 = VIt = iz (YAl 4y _ 5, 12
12 > = (W 1[IZi 1 — [Z|£’Y 9]
V|2 1%
=|_]i_£ _M£7+5]_52

12 7T Tz

Thus, the real and reactive power at the sending end are

i V2 V11| V2|

Pla= cogy— —=—cos{y+ 6, — & 2.16
;Zl |Zi (‘T 1 2) ( }
Wi WVilival |

G = siny — sin(y + &; — 6 2.17
IZJ |Zl (’7 1 2) ( }

Power system transmission lines have small resistance compared to the reactance.
Assuming 1 = 0 (i.e., Z = X /907 ), the above equations become

Wii|Val '
P = | [\| sin{d; — &3) (2.18)
V1
Qn = Ml

{|‘.1! lV2|COS(§1 -—é-_}_)] {2]9)

Since R = 0, there are no transmission line fosses and the real power sent equals
the real power received.

From the above results, for a typical power system with small B/ X ratio, the
following important observations are made :

1. Equation (2.18) shows that small changes in 8, or d, will have a significant
effect on the real power flow, while small changes in voltage magnitudes will
not have appreciable effeet on the real power flow, Therefore, the flow of real
power on a transmission line is govemed mainly by the angle difference of
the terminal voliages (i.e., o o siné ), where § = §; — &g. If V) leads V5,
4 is positive and the rea) power flows from node 1 to node 2. i V) lags V5, 8
is negative and power flows from node 2 to node 1.

2. Assuming R = 0, the theoretical maximum power (static transmission ca-
pacity) occurs when § = 90° and the maximum power transfer is given by

IVAIIV2!

P = o (2.20)

In Chapter 3 we learn that increasing § beyond the static transmission capac-
ity will result in loss of synchronism between the two machines.




3. For maintaining transient stability, the power system is usually operated with
small load angie é. Also, from (2.19) the reactive power flow is determined
by the magnitude difference of terminal voltages, {i.e., Q x V|| = [V3]).

Example 2.5

'l“wo vo?tagc sources V) = 120/-5V and V, = 10040 V are connected by a short
line l?f impedance Z = 1 4 j7Q as shown in Figure 2.9. Determine the real and
reactive power supplied or received by each source and the power loss in the line.

120£~5° = 100/0°
Iy =

2= e = 3.135/-110.02° A

I = 100£0° — 120/ —5° o TR
21 ¥ 7 =3 98° A
S12 = Vil}y = 376.2£105.02° = —97.5 W + j363.3 var

Sa = Vol = 313.5/—69.98° = 107.3 W — j294.5 var

Line loss is given by

St=8+8,=98 W+ 7688 var

From the above results, since Py is negative and P is positive, source 1 receives
Y7.5 W, and source 2 generates 107.3 W and the real power loss in the line is 9.8
W. The real power [oss in the line can be checked by

PL = R|Ij)* = (1)(3.135)> =98 W

Also, since Q, is positive and Q, is negative, source [ defivers 363.3 var and source

2 receives 294.5 var, and the reactive power loss in the line is 68.6 var. The reactive
power loss in the line can be checked by

QL= X|Lisf* = (7)(3.135)2 = 68.8 var
Example 2.6

Thl_S example concerns the direction of power flow between two voltage sources.
Write a MATLAB program for the system of Example 2.5 such that the phase an-
gle Of source | is changed from its initial value by £30° in steps of 5°. Voltage
magnitudes of the two sources and the voltage phase angle of source 2 is to be kept

constant, Compute the complex : ¢ i
plex power for each source and the line loss.
the real power and plot & W i

Shirards « P2, and Py, versus voltage phase angle 8. The following
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El = input(’Source # 1 Voltage Mag. = ');
al = input(’Source# 1 Phase Angle = ');
E2 =

input{’Scurce # 2 Voltage Mag. = ’);
a2 = input(’Source # 2 Phase Angle = ’);

R = input{(’Line Resistance = ’);
X = input(’Line Reactance = ');
& ® LIy % Line impedance

al = (-30+al:5:3C+al)’;
alr = al*pi/180;

k = length{al);

a2 = ones(k,1)*a2; J Create col. array of same length for a2
a2r = a2*pi/180; % Convert degree to radian
V1 = El.*cos(alr} + j*El_=sin(alr);

V2 = E2.%cos(a2r) + j*E2.*sin(a2r);

112 = (Vi - V2)./Z; 1I21=-112,

% Change al by +/- 30, col. array
% Convert degree to radian

S1 = Vi.xconj(I12); P1 = real(S81); Q1 = imag(S1);
§2 = V2.*conj(I21); P2 = real(S2); 02 = imag(sS2);
SL = §1+82; PL = real(SL); QL = imag(SL);
Resultl = (al, P1, P2, PL];

disp(® Delta 1 P-1 P-2 P-L 1)
disp(Resultl)

plot{al, P1, al, P2, al,PL)
xlabel(’Source #1 Voltage Phase Angle')
ylabel(’ P, Watts’),

text(-26, -550, 'P17), text(-26, 600,'P27),
text(-26, 100, *PL’)

result in

Scurce # 1 Voltage Mag. = 120
Source # 1 Phase Angle = -5
Source # 2 Voltage Mag. = 100

Source # 2 Phase Angle = 0
Line Resistance = 1

Line Reactance = 7

Delta 1 P-1 p-2 P-L
-35.0000 -872.2049 967.0119 948070
-30.0000 ~759.8461 832.1539 72.3078
-25. 0000 -£639.5125 692.4848 52.9723

=20.0000 -512.1201% 549.0676 36.9475
=15.000¢ -378.6382 402.9938 24 .3556
=10.0000 -240.0828 255,3751 15.2923

~5.0000 -97.5084 107.3349 9.8265 -
0 48.0000 -40.0000 8.0000
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5.0000 195.3349 -185.5084 9.8265
10.0000 343.3751  -328.0828 15.2923
15.0000 490.9938  -466.6382 24.3556
20.0000 637.0676 -600.1201 36.5475
25.0000 780.4848 -727.5125 52.9723

1000

|

—400

-600
~800

—20  -10 0 10 20 30
Source #1 Voltage Phase Angle

-1
009-40 —

800
600 P /
400
p 200 o /
Waus 0
Py
30

FIGURE 2.10
Real power versus voltage phase angle §.

!:xal_nination of Figure 2.10 shows that the flow of real power along the intercon-
nection is determined by the angle difference of the terminal voltages. Problem 2.9
requires the development of a similar program for demonstrating the dependency
of reactive power on the magnitude difference of terminal voltages.

2.7 BALANCED THREE-PHASE CIRCUITS

;:g:n?m;ion. transmission and distribution of electric power is accomplished by
v genzr at r:f;ph_ase circuits. At l.ht? generating station, three sinusoidal voltages
1 a[fa aving the same amplitude but displaced in phase by 120°. This is
Gt nced source. If the generated voltages reach their peak values in the

1al order ABC, the generator is said to have a positive phase seguence,

h T
: eowljl in Figure 2.11(a). If the phase order is ACB, the generator is said to have a
8ative phase sequence, as shown in Figure 2.11(b).

)
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ECn EB“

~ o

Ean E'd’ L

Epn (a) Ee (b)

FIGURE 2.11
() Posilive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

In a three-phase system, the instantaneous power delivered 10 the external
loads is constant rather than pulsating as it is in a single-phase circuit, Also, three-
phase motors, having constant torque, start and run much better than single-phase
motors. This feature of three-phase power, coupled with the inherent efficiency of
its transmission compared to single-phase (less wire for the same delivered power),
accounts for its universal use,

A power system has Y-connected generators and usually includes both A-
and Y-connected loads. Generators are rarely A-connected, because if the voltages
are not perfectly balanced, there will be a net voltage, and consequently a circulat-
mg current, around the A. Also, the phase voltages are lower in the Y-connected
generator, and thus less insulation is required. Figure 2.12 shows a Y-connected
generator supplying balunced Y-connected loads through a three-phase line. As-
suming a positive phase sequence (phase order ABC) the generated voltages are:

EAII — |Ept£UD
Egu = |Bp}{=120° @21
Ecn = |Epl{—240°

In power systems, great care is taken to ensure that the loads of transmission lines
are balanced. For balanced loads, the terminal voltages of the generator Vian, Vg,
and Vo, and the phase voltages Vyn, Vi and Vo, at the load terminals are balanced.
For “phase A" these are given by

Van = Ban ~ Zela Lad)
Van = VAn = ZLIa (2.23)

T o e ey e by M s S 3 R e R TR R e s
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FIGURE 2.12
A Y-connected generator supplying a Y-connected load.

2.8 Y-CONNECTED LOADS

To find the relationship between the line voltages (line-to-line voltages) and the
phase voliages (line-to-neutral voltages), we assume a positive, ur ABC, sequence.
We arbitrarily choose the line-to-neutral voltage of the a-phase as the reference,

thus
Van = |V,|£0°
Vin = V5| {-120° (2.24)
Ven = |Vp|£—240°

where |V},| represents the magnitude of the phase voltage (line-to-neutral voltage).

The line voltages at the load terminals in terms of the phase voltages are found
by the application of Kirchhoff"s voltage law

Vab = Van = Vo = [V }(1£0° — 1£-120°) = Vi3IV, |£30°

Yoo = Vin — Vo = [ [(1£-120° — 1£-240°) = VAV, |£-90°  (2.25)
Vea = Von ~ Vin = |V,|(14-240° = 1£0°) = V/3[V3 }£150°

_The voltage phasor diagram of the Y-connected loads of Figure 2,12 is shown

n Figure 2,13, The relationship between the line voltages and phase voliages is
demonstrated graphically.

Woodetormuns W 1m0 wtome b ol ol
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Vie

FIGURE 2.13
Phasor diagram shewing phase and line voltages.

If the rms value of any of the line voltages is denoted by Vi, then one of the
important characteristics of the Y-connected three-phase load may be expressed as

Vi, = V3|V, |£30° (2.26)

Thus in the case of Y-connceted loads, the magnitude of the line voltage is
V3 times the magnitude of the phase voltage, and for a positive phase sequence,
the set of line voltages feads the set of phase voltages by 30°,

The three-phase currents in Figure 2.12 also possess three-phase symmetry
and are given by

I, = Z, = |l -8

. E;_ = |,j-120° - § @27
P

- KZ"ﬂ = |, —240° — 6
P

where @ is the impedance phase angle. _
The currents in lines are also the phase currents (the current carried by the
phase impedances). Thus

2.28)
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: -CON D — : :
2.9 A-CONNECTED LOADS The relationship between phase and line currents can be obtained by applying

A balanced A-connected load (with equal phase impedances) Kirehhoff's current law at the comers of A.

is shown in Fig-

ure 2.14. Io = Ly — Iy = |Ip}(1£0° — 1£-240°%) = \/glfp]g-:}{)“
X 2 Iy = Tpe — Iop = | I|(1£~120° — 1£0°) = V3| 1,|L~150° (2.31)
a g, — Ie = lea — Ipe = |I|{(1£~240° — 1/-120°) = V3| 1,1 290°
b . 3

* The relationship between the line currents and phase currents is demonstrated

b & = graphiczai]y in Figure 2.15. -
p Tfm {If the rms of any of the line currents is denoted by I, then one of the impor-
z tant characteristics of the A-connected three-phase load may be expressed as

I
c I. LN I, = V3|I,| {-30° (2.32)
R Thus in the case of A-connected loads, the magnitude of the line current is /3

times the magnitude of the phase current, and with positive phase sequence, the set
of line currents lags the set of phase currents by 30°.

A A-connected load.

Itis clear from the inspection of the circuit that the line voliages are the same
as phase voltages.

210  A-Y TRANSFORMATION

o=, : (2.29)
Copsid?r the phasor diagram shown in Figure 2.15, where the phase current [, is For analyzing network problems, it is convenient to replace the A-connected cir-
arbitrarily chosen as reference. we have cuit with an equivalent Y-connected circuit. Consider the fictitious Y-connected
circuit of Zy QYphase which is equivalent to a balanced A-connected circuit of
L = 1| 20° Z », QMphase, as shown in Figure 2.16.
Ibn: = “pf['"lzou ll30)

Jrca e ][,,]4{—2400

where |7, | represents the magnitude of the phase cument,

FIGURE 2.16
(a1 A to (b) Y-connection.

For the A-connected circuit, the phase current 1, is given by

FIGURE 2.15
Phasor diagram showing phase and line currents. I Vap + Vac o Vap + Vac Vae (2.33)
* T Za 0 Za Za
Ee— T T e e e e S A S S TISRERET T Ry,
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FIGURE 217
Phasor disgram showing phase and line voltages.

The phasor c]iagram in Figure 2,17 shows the relationship between balanced phase
and line-to-line voltages. From this phasor diagram, we find

Vap + Voe = V3 [V [£30° + V3 WVan|Z—=30° (2.34)
= 3Van (2.35)

Substituting in (2.33), we get

Iu — 3Vun
Za
or
Zn
“‘,:m = _"j_ a (236)

Now, for the Y-connected circuit, we have
Vin = 2y 1, (2.37)

Thus, from (2.36) and (2.37), we find that

Z
Dy = _3é (2.38)

2.11 PER-PHASE ANALYSIS

The current in the neutral
d of th e in Fi
is given iy e balanced Y-connected loads shown in Figure 2.12

Lhi=L+Li+1.=0 (2.39)

411 BALANUED THREE-PHASE POWER 3/

Since the neutral carries no current, a neutral wire of any impedance may be re-
placed by any other impedance, including a short circuit and an open circuit. The
return line may not actually exist, but regardless, a line of zero impedance is in-
cluded between the two neutral points. The balanced power system problems are
then soived on a “per-phase” basis. It is understood that the other two phases carry
identical currents except for the phase shift.

We may then look at only one phase, say “phase A" consisting of the source
Vin in series with Z; and Z,, as shown in Figure 2.18. The neutral is taken as
datum and usually a single-subscript notation is used for phase voltages.

=

FIGURE 2.18
Single-phase circuil for per-phase analysis,

I the load in a three-phase clreuit is connected in a A, it can be transformed
into a Y by using the A-to-Y transformation. When the load is balanced, the
impedance of cach leg of the Y is onc-third the impedance of each leg of the A, as
given by (2.38), and the circuit is modeled by the single-phase equivalent circuit.

2.12 BALANCED THREE-PHASE POWER

Consider a balanced three-phase source supplying a balanced Y- or A- connected
load with the following instantaneous voltages’

Uan = V2|V}| cos(wt + 8,)
Uy = V2|V, | cos(wt + 8, — 120°) (2.40)
Pew = V2V cos(wt + 8, — 240°)
_For a balanced load the phase currents are
ia = V2|1,] cos(wt + 6;)
iy = V2| I,| cos{wt + 6; — 120°) (2.41)
1. = V2|I,| cos(wt + 6 — 240°)
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where |V} and |/p| are the magnitudes of the rms phase voltage and current, re-
spectively. The total instantaneous power is the sum of the instantaneous power of
each phase, given by

P3p = Vanls + Upnis + Uenlc (2.42}

Substituting for the instantaneous voltages and currents from (2.40) and (2.41) into
(2.42)

Pag = 2|Vp||Ip] cos{wt + 8,) cos{wt + ;)
+2[Vp||1p| cos(wt + 8, — 120°) cos{wt + 6; — 120°)
+2[Vp||I| cos(wt + 8, — 240°) cos{wt + 8; — 240°)

Using the trigonometric identity (2.4)

Pig = |VpllIpllcos(8, — 8y} + cos(2wt + 8, + 8:)]
+Vpllpllcos(8y — ;) + cos(2wt + 8, + §; — 240°)]  (2.43)
+[Vallpl{cos(8, — 6:) + cos(2wt + 8, + 8, — 480°)]

The three double frequency cosine terms in (2.43) are out of phase with each other
by 126° and add up to zero, and the three-phase instantanecus power is

Fap = 3|VpliLpl cos @ (2.44)

6 = 0, — 8, is the angle between phase voltage and phase current or the impedance
angle.

Note that although the power in each phase is pulsating, the total instanta-
neous power is constant and equal to three times the real power in each phase. In-
decd, this constant power is the main advantage of the three-phase system over the
single-phase system. Since the power in each phase is pulsating, the power, then,
is made up of the real power and the reactive power. In order to obtain formuia
Symmelry between real and reactive powers, the concept of complex or apparent

power (5) is extended to three-phase systems by defining the three-phase reactive
power as ’

Qap = 3|Vl |sin 6 (2.45)
Thus, the complex three-phase power is
S3p = Pag + 7Qa¢ (2.46)
or
S3p = 3V, I (2.47)

Equations (2.44) and (2.45) are sometimes expressed in terms of the rms
magnitude of the line voltage and the rms magnitude of the line current. In a Y-
connected load the phase voltage |V;| = |V|/+/3 and the phase current I, = I;.

i P
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In the A-connection V,, = Vy and |I,| = |I]/+/3. Substituting for the phase volt-
age and phase currents in (2.44) and (2.45), the real and reactive powers for either
connection are given by

Py = V3|V llIL|cos 8 (2.48)
and

Qo = V3|Vi||IL|sin 8 (2.49)

A comparison of the last two expressions with (2.44) and (2.45) shows that the
equation for the power in a three-phase system is the same for either a Y ora A
connection when the power is expressed in terms of line quantities,

When using (2.48) and (2.49) to calculate the total real and reactive power,
remember that 4 is the phase angle between the phase voltage and the phase current.
As in the case of single-phase systems for the computation of power, it is best to
use the complex power expression in terms of phase quantities given by (2.47):
The rated power is customarily given for the three-phase and rated voltage is the
line-to-fine voltage. Thus, in using the per-phase equivalent circuit, care must be
taken to use per-phase voltage by dividing the rated voltage by /3.

Example 2.7

A three-phase line has an impedance of 2 + j4 2 as shown in Figure 2.19.

24400
(AN —r it
Ay
41 =207.85V :\/\
f“"] e b At ‘%GOSE
) AAAASY
\/,vaj%ﬂ
C o AAAATT ¢
300
54003

n

FIGURE 2.1%
Thiree-phase circuit diagram for Example 2.7.

The line feeds two balanced three-phase loads that are connected in parallel. The
first load is Y-connected and has an impedance of 30+ 740 Q per phase. The secpnd
load is A-connected and has an impedance of 60 — j45 §2. The line is energized
at the sending end from a three-phase balanced supply of line voltage 207.85 V.
Taking the phase voltage V; as reference, determine:

(a) The cuirent, real power, and reactive power drawn from the supply.




(b} The line voltage at the combined loads.
(¢) The current per phase in each load,
(d) The total real and reactive powers in each ioad and the line.

(a} The A-connected load is transformed into an equivalent Y. The impedance per
phase of the equivalent Y is

0 - j45 -
2= 9———3-3_ =20~ 415 Q
The phase voltage is
207.85
L =120V
T
The single-phase equivalent circuit is shown in Figure 2.20,
7 2+74Q
(L D AAAA Y
oy ; I
300 20
1"] = 120.{00 v Vz

7409 —-7150
T o— =
FIGURE 2.20

Single-phase equivalent eiccuit for Example 2.7,
The total impedance is

{30 + j40)(20 — j15)
(30 + 740} + {20 — 715)
=24+§4+2-j4=240

Z=2+j1+

With the phase voltage V,,, as reference, the current in phase a is

Vi 12040°
- = =35 A
Z 24 3
The three-phase power supplied is

¥=

§ =3I = 3(120£0°)(5£0°) = 1800 W
(b) The phase voltage at the load terminal is

V2 = 120£0° — (2 + 54)(5£0°) = 110 — j20
=111.8/-10.3° V

The line voltage at the load terminal is

Vaas = V3 £30° Vo = /3 (111.8)£19.7° = 193.64/19.7° Vv

(¢) The current per phase in the Y-connected load and in the equivalent Y of the A

load s
Va 110 - j20 |
I, Z 30+ j40 ) 364 —63.4° A
Va 110 — 520 _ |
= t= 2 TI L is 4470796 560
L= =S —4+J LERPR

The phase current in the original A-connected load, Le., I, is given by

I, 44T2026.56°
V3300 V3z-30°0

Ty = 2.582/56.56° A

(d) The three-phase power absorbed by each load is

S =3Valy = 3(111.87 — 10.3°)(2.236£63.4°) = 450 W + j600 var
Sy = 3VoI3 = 3(111.84 — 10.3°)(4.472/—26.56°) = 1200 W — 900 var

The three-phase power absorbed by the line is
S =38(Ry + X" = 3(2 + j1)(5)2 = 150 W + j300 var

Itis clear that the sum of load powers and line losses is equal to the power delivered
from the supply, i.e.,

S+ Sy + S = (450 + j600) + (1200 — 7900) + (159 + ;300)
= 1800 W + jO var

Example 2.8

A three-phase line has an impedance of 0.4 + 32.7 Q per phase. The line ‘fecds two
balanced three-phase loads that are connected in parallel, The first load is absorb-
ing 560.1 kVA at 0.707 power factor lagging. The second load abslorb§ 132 kW :'t
unity power factor. The line-to-line voltage at the load end of the line is 3810.5 V.
Determine:

(a) The magnitude of the line voltage at the source end of the line.
(b) Total real and reactive power loss in the line. . -
(c) Real power and reactive power supplied at the sending end of the line.
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; 04435270
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1 I ’ : L
4 2.J. Modify the program in Example 2.1 such that the following quantities can
i Vs = 2200/0° be entered by the user:

The peak amplitude V;,,, and the phase angie 8, of the sinusoidal supply

Tio— - v(t) = Vin cos(wt + 8,). The impedance magnitude Z, and the phase angle
-~ of the load.

FIGURE 221

Single-phase equivalent diagram for Example 2.8.

(a) The phase voltage at the load terminals is
3810.5
V3
The single-phase equivalent circuit is shown in Figure 2. 21
The total complex power is

Vo = =2200V

Sh(ze) = 560.1(0.707 + jO.707) + 132 = 528 + j396
= 660/36.87° kVA
With the phase voltage V, as reference, the current in the line is
Shese) _
vy

660,000/ --36.87°
3(220020°)
The phase voltage at the sending end is

U —

= 100£-36.87° A

s

=2200£0° + (0.4 + j2.?)10(]£-—36.87° = 2401.7/4.58° v
The magnitde of the line voltage at the sending end of the line is
Viel = V3V = V3(2401.7) = 4160 v
(b) The three-phase power loss in the line is
Sisgy = BRI + j3X [ = 3(0.4)(100)2 + 53(2.7)(100)2
| =12 kW + 581 kvar
(c) The three-phase sending power is
Sspey = 3NV = 3(2401.7£4.58°)(100£36.87°) = 540 kW + 477 kvar

It is clear that the sum of |
oad owers
4] e i ol p and the line losses is equal to the power

S

(30} = Spaay + Srize) = (528 + 7396) + (12 + j81) = 540 kW + 7477 kvar

2.2

2.3.

The program should produce plots for i{t}, v(t), p(t), p.(t} and p,(£), sim-
ilar to Example 2.1. Run the program for V,, = 100 V, §, = 0 and the
following loads:

An inductive load, Z = 1.25/60°0)
A capacitive load, Z = 2.0£-30°¢1
A resistive load, Z = 2.5/0°0

() From p,(t} and p,(t) plots, estimate the rea} and reactive power for each
load, Draw a conclusion regarding the sign of reactive power for inductive
and capacitive loads.

{b) Using phaser values of current and voltage, calculate the real and reactive
power for each load and compare with the results obtained from the curves.
(c) If the above loads are all connected across the same power supply, deter-
mine the total real and reactive power taken from the supply.

A single-phase load is supplied with a sinusoidal voliage
v{t) = 200cos(377t)
The resulting instantaneous power is
p(t) = 800 + 1000 cos(754t — 36.87°)

(a) Find the complex power supptied to the load.

(b) Find the instantanecus current it} and the rms vatue of the current sup-
plied to the load,

(c) Find the load impedance.

(d) Use MATLAB to plot »(£), p(t). and i{t} = p(t)/v(t) over a range of
0 to 16.67 ms in steps of 0.1 ms. From the current plot, estimate the peak

" amplitude, phase angle and the angular frequency of the current. and venfy

the results obtained in part (b). Note in MATLAB the command for
element-by-element division is . /.

array ar

An inductive load consisting of B and X in series feeding from a 24.00-\’
rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.




24. Aninductive load consisting of B and X in parallel feeding from a 2400-V

nn; ;Jpply absorbs 288 kW at a lagging power factor of 0.8, Determine R
and X.

2.5. Two loads connected in parallel are supplied from a single
source. The two loads draw a total rea] power of 400 kW
of 0:8 lagging. One of the loads draws 120 kW at a po
leading. Find the complex power of the other load,

-phase 240-V ms

wer factor of 0.96

2.6. The ]{:'!Zld shown in Figure 2.22 consists of a resistance R in parallel with a
capacttor of reactance X, The load is fed fr i

211213{1}e‘£(8£ i\l;1pedance 8.4+ j11.2 Q. The rms voltage at the load terminal is
rms, and the load is taking 30 kVA at 0.8 power f i
(a} Find the values of 12 and X. ERRA e,

(b) Determine the supply voltage V.

84441120

v 12000°P VSR ——34X

FIGURE 222
Circuit for Problem 2.6,

2.7. Twoimpedances, Z, = 0.8 +75.6 Qand Z, = 8516 Q, and a single-phase
!nolf)r are connected in parallel across a 200-V rms, 60-Hz supply as shown
in Figure 2.23. The mator draws 5 kVA at 0.8 power factor lagging.

at a power factor

+: i I
e . I I3
200£0° v By =8 kA
5.6 16 T at 0.8 PF lag
FIGURE 223

Circuit for Problem 2.7.
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(a} Find the complex powers 5}, 5 for the two impedances, and § for the
motor.

(b) Determine the total power taken from the suppty, the supply current, and
the overall power factor.

(¢) A capacitor is connected in parallel with the loads. Find the kvar and the
capacitance in uF to improve the overall power factor to unity. What is the
new line current?

2.8. Two single-phase ideal voltage sources are connected by a line of impedance
of .7 + 72.4 © as shown in Figure 2.24. V| = 500/16.26° V and V =
585/0° V. Find the complex power for each machine and determine whether
they are delivering or receiving real and reactive power. Also, find the rea!
and the reactive power loss in the fine.

0.7 + j24 0

S00£16.26° V

FIGURE 2.24
Circuit o Problomn 2.8,

2.9, Write a MATLAB program for the system of Example 2.6 such that the volt-
age magnitude of source 1 is changed from 75 percent to 100 percent of
the given value in steps of 1 V. The voltage magnitude of source 2 and the
phase angles of the two sources is to be kept constant. Compute the complex
power for each source and the line loss. Tabulate the reactive powers and
plot @1, Q2, and @1, versus voltage magnitude |V1]. From the results, show
that the flow of reactive power along the interconnection is determined by
the magnitude difference of the terminal voltages.

2.10. A balanced three-phase source with the following instantaneous phase volt-
ages

tgn = 2500 cos{wt)
Vg = 2500 cos(wt — 120°)
v = 2500 cos(wt — 240°)

Ry



supplies a balanced Y-connected load of impedance Z = 250/36.87°
phase. .

(a) Using MATLAB, plot the instantaneous POWEILS p,, pp, p. and their sum
versus wi over a range of 0:0.05: 27 on the same graph. Comment on the

nature of the instantaneous power in
each phase and
real power. P the total three-phase

(b) Use (2.4) to verify the total power obtained in part (a)

£} per

211. A 4157-V ms, (hreejphase supply is applied to a balanced Y-connected
lhrefzfphase load consisting of three identicaj ‘impedances of 48/36 87"?!
Taking the phase to neutral voltage V,, as reference calculat ' ‘
{2} The phasor currents in each line, 3 e

(b) The total active and reactive power supplied to the load

2.12. Repeat Problem 2,11 with the same three-

; phase impedances arranged i
connection. Take V), as reference. : —

2.13. A balanced delta connected load
the end of a three-phase line as sh
L+ 72 § per phase. The line
tine-to-line voltage of 207.85
following:

(a)} Current in phase a.

(b) Tertal fzomplex power supptied from the source.
{¢) Magnitude of the line to-line voltage at the load terminal.

of 1§ + j18 2 per phase is connected at
- Shown tn Figure 2.25. The line impedance is
15 supplied from a three-phase source with a
V rms. Taking V,, as reference, determine the

1+329
ao—————__/\/mm\_
a
Vil = 20785y
f}c'__“‘_‘———WV\,—NW\_ b
15 + ;180

o AAAA
FIGURE 2.25
Circuit for Problem 2,13,

2.14, Three paralle] three-

h = 5
three-phase supply. phase loads are supplied from a 207.85-V rms, 60-Hz

The loads are as follows:

Load 1: A 15 bp motor operatin
. 0.6 lag

28INg power factor.

g at full-load, 93.25 percent efficiency, and
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Load 2: A balanced resistive load that draws a total of 6 KW.
Load 3: A Y-connected capacitor bank with a total rating of 16 kvar.

(1) What is the total system kW, kvar, power facior, and the supply current
per phase?

(b) What is the system power factor and the supply current per phase when
the resistive load and induction motor are operating but the capacitor bank is
switched off?

2.15. Three loads are connected in parallel across a 12.47 kV three-phase supply.

Louad E: Inductive load, 60 kW and 660 kvar.

Load 2: Capacitive load, 240 kW at 0.8 power factor.

Load 3: Resistive load of 60 kW.

(a) Find the total complex power, posver factor, and the supply current.

(b} A Y-connected capacitor bank is connected in parallel with the loads.
Find the total kvar and the capacitance per phase in zF to improve the overall
power factor to 0.8 lagging. What is the new Jine current?

2.16. A balanced A-connected load consisting of a pure resistances of 18 Q per
phase is in parallel with a purely resistive balanced Y-connected load of 12 €}
per phase as shown in Figure 2.26, The combination is connected to a three-
phase balanced supply of 346.41-V ms (line-to-line) via a three-phase line
having an inductive reactance of j3 Q per phase. Taking the phase voltage
Vun as reference, determine
(a) The current, real power, and reactive power drawn from the supply,

(b) The line-to-neutral and the line-te-line voltage of phase e at the combined
load terminals.
jia
o e a
Vil =346.41V
Vil ; 189

b_ ey

e Saas c

$12Q
[
FIGURE 2.2§

Circuit for Problem 2.16.






